Systolic arrays for integer Chinese remaindering

نویسندگان

  • Çetin Kaya Koç
  • Peter R. Cappello
چکیده

This paper presents several time-optimal, and spacetime-optimal systolic arrays for computing a process dependence graph corresponding to the mixed-radix conversion algorithm. The arrays are particularly suitable for software implementations of algrithms from the applications of residue number systems on a programmable systolic/wavefront array. Examples of such applications are exact solution of linear systems and matrix problem over integral domains. We also describe a decomposition strategy t o treat a mixed-radix conversion problem whose size exceeds the arrays size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards an exact adaptive algorithm for the determinant of a rational matrix

In this paper we propose several strategies for the exact computation of the determinant of a rational matrix. First, we use the Chinese Remaindering Theorem and the rational reconstruction to recover the rational determinant from its modular images. Then we show a preconditioning for the determinant which allows us to skip the rational reconstruction process and reconstruct an integer result. ...

متن کامل

Chinese Remainder Codes: Using Lattices to Decode Error Correcting Codes Based on Chinese Remaindering Theorem

This report is an incomplete survey of Chinese Remaindering Codes. We study the work of Goldreich, Ron and Sudan [GRS00] and Boneh [B02] which give unique and list-decoding algorithms for an error correcting code based on the Chinese Remaindering Theorem. More specifically, we will look at a decoding algorithm from [GSM00] which uniquely decodes upto (n − k) log p1 log p1+log pn errors. We will...

متن کامل

Computing resultants on Graphics Processing Units: Towards GPU-accelerated computer algebra

In this article we report on our experience in computing resultants of bivariate polynomials on Graphics Processing Units (GPU). Following the outline of Collins’ modular approach [6], our algorithm starts by mapping the input polynomials to a finite field for sufficiently many primes m. Next, the GPU algorithm evaluates the polynomials at a number of fixed points x ∈ Zm, and computes a set of ...

متن کامل

Noisy Chinese remaindering in the Lee norm

We use lattice reduction to obtain a polynomial time algorithm for recovering an integer (up to a small interval) from its residues modulo sufficiently many primes, when the residues are corrupted by a small additive noise bounded in the Lee norm. Our results are similar to those obtained for Hamming norm, but based on rather different arguments.

متن کامل

A Strategy for Finding Roots of Multivariate Polynomials with New Applications in Attacking RSA Variants

We describe a strategy for finding small modular and integer roots of multivariate polynomials using lattice-based Coppersmith techniques. Applying our strategy, we obtain new polynomial-time attacks on two RSA variants. First, we attack the Qiao-Lam scheme that uses a Chinese Remaindering decryption process with a small difference in the private exponents. Second, we attack the so-called Commo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1989